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Abstract. We show that the anomalous scaling behaviour of the moments of the wavefunc- 
tion at the threshold of Anderson localisation implies a log-normal distribution for the 
probability l # j 2  at first order in E = d - 2. We discuss this result and its implications critically 
and are led to conclude that the upper critical dimension of Anderson localisation is infinity. 

In the present understanding of Anderson localisation a key role is played by the 
expansion of universal properties near the threshold in powers of the difference E 

between the space dimensionality d and the lower critical dimension (LCD) of two. It 
was indeed argued by Abrahams et a1 (1979) that all quantum states of independent 
electrons in the presence of disorder should be marginally localised in two dimensions. 
Wegner (1979, 1980) showed how one could tackle the localisation problem by means 
of field theoretical techniques, in an analogous way to those introduced to discuss the 
critical behaviour of Heisenberg-like models near the LCD. In the latter cases, however, 
an E expansion near the upper critical dimension ( UCD), which equals four in ordinary 
critical phenomena, is also available. No such expansion is known at present for the 
localisation problem. Even the value d, of the UCD has not yet been identified with 
certainty. Several arguments have been put forward (in particular by Kunz and Souillard 
(1983)) to support d,  = 4, although other values of d,  have been proposed. 

We consider in this letter some arguments hinting towards the conclusion that d,  
equals infinity, in the sense that mean-field behaviour is never observed. Our arguments 
hint at a first-order transition in the d + 00 limit, in agreement with the recent results 
of Efetov (1984) on the Cayley tree (it is not yet clear, however, whether Efetov’s 
results directly imply a first-order phase transition). 

The UCD can be identified (Toulouse 1974) as the value of d for which the 
hyperscaling relations (i.e. the d-dependent scaling laws) are satisfied by the classical 
exponents. Kunz and Souillard (1983) have argued that the classical exponents are 
those valid on the Cayley tree, for which they have obtained v = vo = for the exponent 
of the localisation length 6 and p = po = 1 for the exponent of the conductivity U. On 
the other hand, the scaling theories of localisation imply the scaling law 

p = ( d  -2)v ( 1 )  
which relates d, p and v. This expression is the analogue for localisation of the scaling 
law: 

y +2p = dv (2) 
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if one takes into account the fact that the exponent p equals zero for the localisation 
transition (since the order parameter is the density of states, which has no singular 
behaviour at the localisation threshold) and that k 2 v  (characterised by the exponent 
p + 2 v )  is the analogue of the inverse susceptibility. Inserting the Cayley tree values 
vo, po (Last and Thouless 1974, Kunz and Souillard 1986) into ( l ) ,  Kunz and Souillard 
(1983)  obtain d, = 4. The same value of the UCD is obtained if, according to the same 
authors, we consider the values v = 1 / E  and p = 1 evaluated in the E expansion as 
exact. Then v = vo and p = po at d = 4.  

A third argument leading to d, = 4 has also been proposed by Kunz and Souillard 
(1983) .  They consider the behaviour near threshold of the inverse participation ratio 
P ' 2 ' ( E ) ,  defined by 

A 

where (CIA(r) is an eigenfunction with eigenvalue eh of the Hamiltonian, p ( E )  is the 
density of states and the average is over the realisations of the disorder. Wegner (1980)  
has shown that P C 2 ) ( E )  near the localisation threshold E,  has the behaviour 

(4) 

where 5 is the localisation length and the exponent x2 is given to first order in the E 

expansion by 

P(2'( E )  - ( E ,  - E)"2 - 5-x' 

X , = T ~ / V = ~ - - ~ E .  ( 5 )  

If one accepts that there are no corrections to this expression in higher order in E, one 
obtains x2 = 0 at d = 4,  with a jump in the participation ratio at the mobility edge. This 
result, being in agreement with the corresponding result on the Cayley tree, again 
identifies d, = 4. 

This last argument is subject to some criticisms. The inverse participation ratio is 
just the case q = 2 of an infinite hierarchy of moments Pc9)(  E )  of the probability density 
/GI2. They are defined by 

and they behave near E,  (according to Wegner 1980) as follows: 

( 7 )  

(8) 
There is no reason why the inverse participation ratio should be given a privileged 

role with respect to all these quantities. If we consider it in the case of the magnetic 
impurity problem, for instance, and we use the value of x2 calculated by Pruisken (1985):  

p(q'( E )  - 5-x. 

xq = (9 - 1 ) d  - q ( q  - 1 ) ~ .  

where the exponent xq is given to first order in the E expansion by 

x,=2-& (9) 
we obtain x2 = 0 at d = 4,  in contrast to the value d, = 3,  obtained from the matching 
of the &-expansion value of v = 1 / 2 8  with the Cayley tree result v = f (Kunz and 
Souillard 1983). 

We can also argue that ( 5 )  cannot be extrapolated as such to E = 2.  Given the 
meaning of P ( q ) ,  the corresponding exponent xq ,  considered as a function of q, should 
be non-decreasing. The approximate expression (8) can be accepted only until this is 
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true, i.e. for q - 1 < 1 / ~ ,  whereas it appears to vanish at the large value q = d / e .  It is 
unwise therefore to draw any conclusion from the location of the zeros of xq. 

It is more reasonable to consider what information the singular behaviour of the 
P ( q )  provides on the structure of the localisation threshold. If we assume that the sum 
appearing in (6) is dominated by a typical wavefunction pE (Castellani and Peliti 
1986) we can interpret the properties of the P ( q )  in terms of properties of the probability 
density IqEI2. Let us consider the probability distribution w(z) of the values of IqE(’: 

where the sum runs over the points of the lattice. 

if one accepts dealing instead with the quantity w ( z )  defined by 
The hypothesis of the existence of a ‘typical’ wavefunction is in fact not necessary, - 

We then obtain 

The expression (8) for the exponents xq is compatible with a log-normal distribution 
of z: 

where 

A’= 2e In 6 (13) 

In zo= -(2+2~) In 6. (14) 

These results cannot be taken at face value, since we know that normalisability 
implies that lpE12 must be smaller than one at any lattice point and (12) has an 
unphysical tail towards higher values of z. When one computes the moment P ( q )  the 
integrand in (1 1) is a Gaussian in In z, peaked around the value In zo+ A2q. For a 
sufficiently high value of q this peak will lie in the unphysical region. This corresponds 
to the region in which expression (8) becomes unacceptable. We can expect instead 
that xq saturates at its maximum value 1 / ~  attained at q = 1 + 1 / ~ .  Then as d -+ 03 all 
the xq (q 2 1) would tend simultaneously toward zero. We now try to interpret this 
behaviour in terms of the multifractal properties of the probability distribution lpEI2. 

Castellani and Peliti (1986) have attempted to relate the behaviour of the moments 
P ( 9 ) ( E )  to the multifractal character of IqE( r ) / * .  In a multifractal the probability 
distribution p ( r )  is given by a superposition of singularities of type CY, each type of 
singularity being distributed over a fractal set of Hausdorfl dimension  CY) (Benzi er 
al 1984, Halsey et a1 1986). A singularity of type CY is said to lie at the point r,, if, for 
l + O ,  

J drp( r ) - I” .  
Ir - PO/ < I 
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It follows that if we consider a multifractal described with a resolution 1, the moments 
P(,) of the probability distribution p ( r )  can be given by 

where the first factor takes care of the behaviour of p around the singularities, and 
the second factor takes care of the number of them present. From (16) by a saddle 
point integration we obtain, for I + O ,  

(17) p(4) - I.*s-f(o*) 
where a* satisfies the equation 

f ' ( a * )  = q. (18) 

These concepts apply to the wavefunction if we identify p ( r )  with lqE(r)12. We 
consider a probability coarse-grained over a box of linear size I :  

Varying the resolution length I at a given value of the energy E corresponds to 
considering a varying localisation length 5' = (/ 1 by scaling. The exponent in (17) may 
thus be identified with x,. Therefore x, and f ( a )  are related to each other by a 
Legendre transformation: 

a =dx,/dq f ( a ) + x ,  = aq. (20) 

The Gaussian distribution of In z has its counterpart in the Gaussian distribution 
of a :  in fact, f ( a )  is given by the quadratic expression 

1 
f ( a )  = d -- ( d +  E -a)*. 

4 E  

Cutting the spurious tail at high values of In z corresponds to assuming a 2 0. With 
this restriction, if we take the limit d + CO in (21) we obtain 

d lim +cc f ( a )  = a. (22) 

The integral in (16) is then dominated by the smallest value of a, i.e. zero. In this 
limit, therefore, all the P ( , )  become simultaneously constant as we had previously 
supposed. In this situation it is hard to expect the system to exhibit mean-field 
behaviour. One would tend more to attribute to it a first-order transition, compatible 
with the Cayley tree results of Efetov (1984). 

The arguments we have reported hint towards a value of infinity for d,,  compatible 
with a situation in which the transition approaches a first-order transition as the 
dimensionality increases. It is indeed reasonable to expect that a system with a peculiar 
second-order transition for which p = 0 will more easily switch to a first-order one 
rather than to a mean-field behaviour with p # 0. 

It would be interesting to evaluate higher-order terms in the expansion (8) of the 
indices x, to find clues to its saturation at its maximum value. Numerical simulations 
could also help in checking the form we have suggested for the distribution of lqEI2. 
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In conclusion we have found that the values of the probability density IqE1* are 
likely to be distributed according to a cutoff log-normal law. This implies that, as the 
dimensionality increases, the moments of the probability distribution all tend to become 
simultaneously constant. The d + 0;) behaviour could then exhibit a first-order transition 
and mean-field behaviour would never be observed. The UCD of localisation would 
therefore be infinity. 

CDC thanks the Zentrum fur Theoretische Studien, ETH Zurich for the kind hospitality 
extended to him during the performance of this work. 
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